

Rotary
Drilling
Tools

General Description

Since 1996 the goal of **SIP&T** has always been to manufacture a wide range of rotary tools and Kelly bars with highest level of reliability and performance in the field of vertical foundations.

The search for high performance, combined with the search forever better reliability, has always been the real and recognizable philosophy of SIP&T in construction sites around the world.

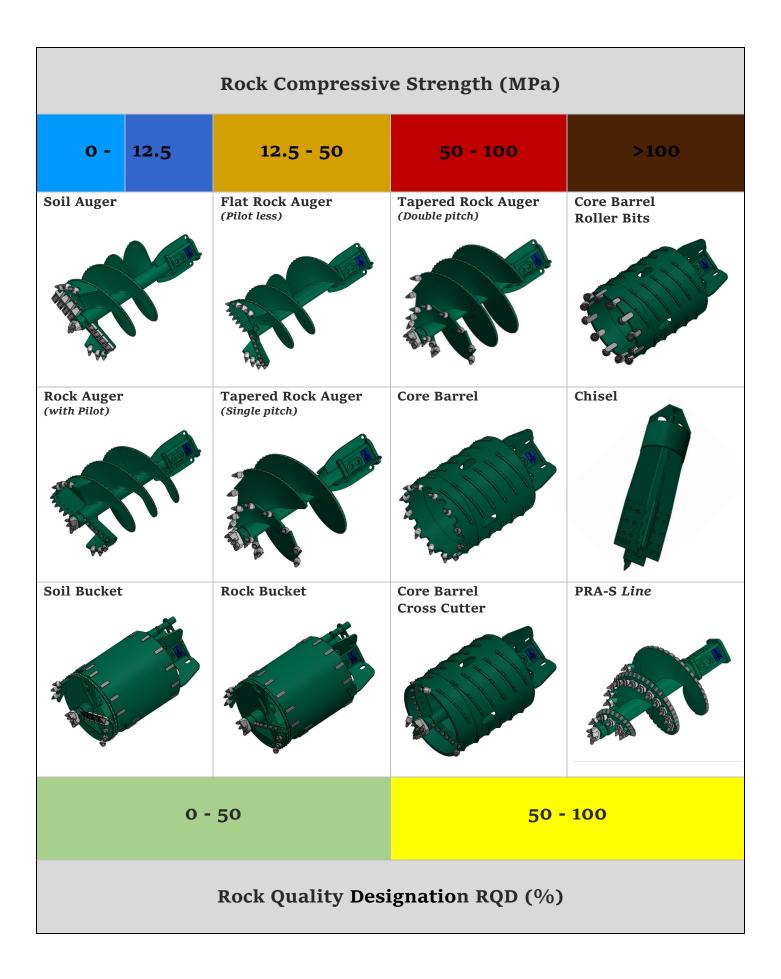
Numerous efforts have been made, over the years, by SIP&T engineers and workers to offer to customers the best power tool and Kelly bar suitable to the excavation. This concept combined with the competent advice received from our customers and drill operators, together with the continuous activity and research of our technicians in all type of work on construction sites and in soils around the world, has recently led to the creation of our new range SHD, which for us means simply SUPER HEAVY DUTY.

The SHD Line tools has been introduced as product line with the goal of even better satisfying various requirements of customers. In details, the line is manufactured accordingly to the different rigs torque and soil-rock hardness. Such line of drilling tools has some basic principles, which are dealt with utmost priority, such as:

- Quality
- High performance
- Greatest reliability
- Highest safety levels
- Lowest maintenance
- Long lifetime
- Customized design

IDE is fully committed to their industry and adding value for their customers. They believe in consistently delivering high quality products and finding the best solutions they can possibly deliver to their customers. This approach means making customer relations and service a priority. It is a fast growing company committed to developing products with high quality and advanced technology. We are glad to have them as distributor for U.S. together we can complete our mission to provide the best and latest technology to people everywhere in the world.

Short delivery time can be met even for special tools or components. Having a highly flexible production line, experienced technicians pleased to assist clients on site and extensive stocks are prerequisites for this.


Client satisfaction is key criteria for all tools and components we make.

		Compr Stre (M	ressive ngth pa)	Soft					Medium				Hard			Very Hard																				
	SEDIMENTARY ROCKS	min.	max.	0	2	20	90	⊋ 5	2 6	2	80	06	8	110	120	130	140	150	091	170	180	000	010	000	077	230	240	250	260	270	280	290	38	310	320	330
Clastics	Gravel, Loam, Silica, Clay, Sand	< 5	30					T															T	T	T											
	Breccia	10	45																						П											
	Conglomerate	80	150							Т																						Ì				
	Sandstone	120	200					\top																T	Т											
	Argillite	10	100							Т	Π									Ī			Т	Т	Т	Т	T	T				Ī				
	Tuff	5	10					T			Т								Т	Ī			Т	Т	Т	Т	T	T				Ī				
	Limestone, Dolostone	55	220			T	T		Т	Т	Т									Ī		Т	Т	Т	Т	Т	T	T				Ī				
	Travertine	20	60						T		Т									Ī				Ī	Т	Т	Т	T				Ī				
	Gypsum, Halite	< 5	30					T		Т	Т								Т				Т	T	Т	Т	T									
Chemistries	Carbonate	10	25					†											Т	Ī			Т	T	Т	T	T	T				Ī				
	Flint (o Jasper)		190					†												Ī		Т	Т	Т	T	Ť	T	T				T				
0	Phosphorite	<5	10					1																												
	Alabaster	55	120																																	
	Anhydrite	100	130			Ť		1			۲								T						T											
e	Marl	<5	30				+	$^{+}$	+	Н									_	T		+	+	T	Ť	+	Ť	\dashv				T				
mis fr	Coal	5	50						Т		Т								Т	T					T	Ť	_					1				
Biochemistries	Diatomite	10	100					+	Т	Т	Т								_						Т	+	T									
	METAMORPHIC ROCKS	min.	max.	0	2	a	8 :	2 8	2 8	8 8	8	8	8	110	8	8	140	8	98	2	8 8	2 8	3 9	2 80	9 8	R2	92	230	560	8	280	530	8	310	330	8
	Marble	90	220					+					_		_			_				Ť					-			-	-	-	0.5		-	
	Gneiss	110	240			+		+	+	+									+		+		+		Ť	Ť	+	_				_				
	Andresia	70	200			+		+	+										+	+	+	+	+	+	+	_	+	_				_				
	Anphibolite	170	280			+	-	+	+		H								-		+		Ŧ	t	Ť	Ŧ	+	+				_				
	Schists	5	100					+	Ŧ	H										_			+	+	+	+	+	_			_	+				
	Quarzite	150	300			_		+	+	+	+												Ŧ	+	Ť	Ŧ	+	+				_				
	Phyllite, Mica Schist, Calcareous Schist	70	100			+		+	+													+	+	+	+	+	_	_								
	Paragneiss, Ortogneiss	110	160			+		+	+	+	H								+	+	+	+	+	+	+	+	+	+	_	_	_	-				
	Chlorite schist	10	50					+	+	+	+								_	+		+	+	+	+	+	+	+		_		_				
	Serpentinite	10	> 300			_		+	+	+	+								+	+		+	+	+	+	+	+	\dashv		_						
	IGNEOUS ROCKS			_	0	0	0 1	0 0		2 2	0	0	8	0	0.	00	9	0	20 1	0	9 8	2 9	2 0	9 9	2 9	200	2	2	03	0	00	0	8	0	2	0
	Basalt	min. 120	300		=	24	n .	4 ,	^ 4	, ,		6	2	=	12	==	=	22	= :	=	2 2	- 8	4 5	, 6	7 6	27	24	25	36	27	38	52	33	<u></u>	es.	33
		180	> 300			+	-	+	+	+	\vdash								-	+	+	+	+	+	+	+	+	-	-	-	_					
	Porphyry Granite	130	250			+	-	+	+	+	\vdash	\vdash								H	+	+	+	+	+	+	+	_		_		_			_	
	Diorite, Labradorite	180	300			+	-	+	+	+	+	\vdash							-	+	+	+	+	+	+	+									_	
	Syenite	150	270			+	_	+		+	+											+	+	+	+	+	+	_								
	Gabbro	160	300			+	-	+	+	+	\vdash	\vdash						_	+	+	+	+	+	+	+	+	+	-				-		\dashv	_	
	Andesite					+	_	+	+	+	\vdash								4	+	+	+	+	+	+	+	+	-		-	_					
		180	> 300					+																												
	Trachyte	140						+																												
	Grandioroto, Tonalite, Grandiorite	150	300					+																												
	Rhyolite	160	190					+														1														
	Leucititi	110	140					+																												
	Obsidian, Pomice	100	120					1																												
	Dacite	140	170					1																												
	Peridodite Peridodite	100	> 300					1																												
	Pegmatite, Aplite, Porphryte	100	250																																	

RECOMMENDED CHART

IDE International Drilling Equipment, Inc. 645 Angus Street Rural Hall, NC 27045 p 877-207-6062 f 866-710-3842 IDEDRILL.com